InspiRe – LayTec’s new in-situ monitoring tool for perovskites

Recently, the efficiency of perovskites photovoltaics (PV) has increased tremendously [1]. In a tandem configuration at Helmholtz-Centre Berlin (HZB), even the best silicon solar cell was surpassed (29.1%) using wet-chemical low-cost methods [1, 2]. Despite this progress many challenges remain for this technology. LayTec’s new InspiRe (Fig. 1) in-situ metrology system applies high-speed in-situ reflectance measurements for monitoring perovskite thin film formations during spin-coating and subsequent annealing. Annealing indicate “over-annealing” after the desired band gap has been achieved. This methodology, for the first time, allows to systematically study film formation during two crucial process steps for identifying optimization routes and for implementing a rigid quality control scheme for up-scaling and industrialization. In an upcoming publication, the HZB researchers will present their analysis of the perovskite formation based on measurements employing LayTec’s InspiRe metrology system.

In collaboration with Prof. Dr. Norbert Nickel’s group at HZB, LayTec designed the InspiRe in-situ metrology system, which was applied to monitor both, spin-coating (Fig. 2) and annealing (Fig. 3). Gathering data at a time resolution on the millisecond scale allows to resolve the kinetics and phase formations during film formation.

While spin-coating the absorption behavior and the thinning of precursor solution is monitored. The absorption edge, i.e. band gap, of the deposited perovskite film is directly derived during annealing. Spectral changes during annealing indicate “over-annealing” after the desired band gap has been achieved. This methodology, for the first time, allows to systematically study film formation during two crucial process steps for identifying optimization routes and for implementing a rigid quality control scheme for up-scaling and industrialization. In an upcoming publication, the HZB researchers will present their analysis of the perovskite formation based on measurements employing LayTec’s InspiRe metrology system.

Fig. 1: Experimental setup for spin-coating (a, b) and annealing (c, d) of perovskite thin films illustrating the concept of the particular measurements (a, c) and the actual setups (b, d). LayTec’s InspiRe metrology system was employed for monitoring both key processes for perovskite thin film formation.

Fig. 2: Spin-Coating: Examplary color plot obtained during perovskite deposition. The inset zooms into the first 5 s after starting the rotation.

In collaboration with Prof. Dr. Norbert Nickel’s group at HZB, LayTec designed the InspiRe in-situ metrology system, which was applied to monitor both, spin-coating (Fig. 2) and annealing (Fig. 3). Gathering data at a time resolution on the millisecond scale allows to resolve the kinetics and phase formations during film formation.

While spin-coating the absorption behavior and the thinning of precursor solution is monitored. The absorption edge, i.e. band gap, of the deposited perovskite film is directly derived during annealing. Spectral changes during annealing indicate “over-annealing” after the desired band gap has been achieved. This methodology, for the first time, allows to systematically study film formation during two crucial process steps for identifying optimization routes and for implementing a rigid quality control scheme for up-scaling and industrialization. In an upcoming publication, the HZB researchers will present their analysis of the perovskite formation based on measurements employing LayTec’s InspiRe metrology system.

Fig. 3: Annealing: Example of a color plot obtained during perovskite annealing. The red arrow marks the shift of the absorption edge.

You can meet us at the following workshops, conferences and trade fairs:

23-28 August 2020 | IWN | Berlin, Germany