In-situ curvature measurements applied to MOVPE-based growth of edge-emitting diode lasers

A. Maaßdorf\(^1\), O. Schulz\(^3\), M. Zorn\(^2\), J.-T. Zettler\(^3\), and M. Weyers\(^1\)

\(^1\)Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff Str. 4, 12489 Berlin, Germany
\(^2\)Jenoptik Diode Lab GmbH, Max-Planck-Str. 2, 12489 Berlin, Germany
\(^3\)LayTec AG, Seesener Str. 10-13, 10709 Berlin, Germany
Outline

- Motivation: Strain in III-V devices?
- In-situ metrology measurement setup
- Growth and characterization of strain compensated III-V structures:
 - Test sample studies
 - Al$_{0.85}$Ga$_{0.15}$As$_y$P$_{1-y}$ for high power IR laser diodes (730 nm ... 1180 nm)
 - InGaP for red emitting laser diodes (635 nm ... 670 nm)
 - Implementation of strain compensating (SC) Al$_{0.85}$Ga$_{0.15}$As$_y$P$_{1-y}$ layers in edge emitting diode lasers:
 - Super large optical cavity lasers (SLOC) with SC
 - 2-stage bipolar cascade laser (BCL) with SC
- Summary
Motivation: Strain in III-V devices?

- MOVPE based growth of near infrared edge-emitting diode lasers
- Al_xGaAs-based waveguide (WG, $x=0.4$) and cladding layers (CL, $x=0.85$)
- Need for higher output powers (808 nm emission)
 - Option A
 - Increased vertical intensity distribution across cavity
 - Lower facet load \rightarrow longer cavities
 - Option B
 - Distribute light emission across several lasing stages \rightarrow bipolar cascade laser (BCL)
 - Increased overall thickness $d > 5 \, \mu\text{m}$, mean Al $> 48\%$

- Increased wafer bow becomes critical in terms of acceptance limits during processing & packaging:
 - Stepper lithography \rightarrow out-of-focus problems
 - Required for terrace-free cleaved laser facets \rightarrow wafer thinning $450 \, \mu\text{m} \rightarrow 120 \, \mu\text{m}$ increases curvature by factor 14
 - 10 mm laser bar soldering
Motivation: Strain in III-V devices?

- AlAs is almost perfectly lattice matched to GaAs:
 - RT: $\Delta a/a = 0.14\%$

http://www.ioffe.rssi.ru/SVA/NSM/Semicond/AlGaAs/
Motivation: Strain in III-V devices?

- AlAs is almost perfectly lattice matched to GaAs:
 - RT: $\Delta a/a = 0.14\%$
 - 750°C: $\Delta a/a = 0.022\%$

→ Thermal expansion mismatch

Decrease mismatch at RT:
→ Increase mismatch at T_{growth}

Evaluate strain at T_{growth}:
→ Measure in-situ curvature
Setup

- Planetary 5×4“ AIX2400G3
- Precursors: TMGa, TMAI, TMIn, AsH3, PH3, ...
- LayTec EpiCurveTT AR
Setup

- Planetary 5×4“ AIX2400G3
- Precursors: TMGa, TMAI, TMIn, AsH3, PH3, ...
- LayTec EpiCurveTT AR

Test sample structure:

\[
\begin{align*}
&\text{GaAs cap} \quad 20 \text{ nm} \\
&\text{Al}_{0.85}\text{Ga}_{0.15}\text{As}_{y}\text{P}_{1-y} \\
&\text{Al}_{0.85}\text{Ga}_{0.15}\text{As} \\
&\text{n-GaAs substrate} \\
&d_{\text{AlGaAs}} + d_{\text{AlGaAsP}} = 650 \text{ nm}
\end{align*}
\]
Growth of Al$_{0.85}$Ga$_{0.15}$As$_y$P$_{1-y}$: test samples

- $d_{\text{AlGaAs}} = 500$ nm, $d_{\text{AlGaAsP}} = 150$ nm
- Variation of phosphorus mole fraction

Adding $\sim 3.5\%$ of phosphorus to Al$_{0.85}$GaAs leads to exact lattice matching to GaAs at room temperature.
Growth of $\text{Al}_{0.85}\text{Ga}_{0.15}\text{As}$: test samples

- $\text{Al}_{0.85}\text{GaAs}$ reference

1. Heat up:
 Concave wafer bow due to thermal gradient over substrate

2. Growth:
 Layer growth under compressive strain due to lattice mismatch

3. Cool down:
 Thermal expansion mismatch
Growth of Al$_{0.85}$Ga$_{0.15}$As$_y$P$_{1-y}$: test samples

- Phosphorus mole fraction 1-y_{solid} = 4% (XRD)
- Variation of d_{AlGaAs} and d_{AlGaAsP}

\[\varepsilon_L = \frac{\Delta \kappa / \Delta t \cdot d_{\text{SUB}}^2}{6 \cdot r_G} \times \frac{E_S}{E_L} \]

- \(\varepsilon_L \): layer strain
- \(E_L, E_S \): Young’s modulus
- \(d_{\text{SUB}} \): substrate thickness
- \(r_G \): growth rate
- \(\Delta \kappa / \Delta t \): curvature slope

\(\varepsilon = 1328 \text{ ppm} \rightarrow 1-y_{\text{solid}}(703°C) = 4.5\% \)

- Can only offset part of the thermal mismatch induced RT wafer bow by growing tensile strained Al$_{0.85}$GaAs$_y$P$_{1-y}$ due to onset of relaxation
Growth of InGaP on GaAs (1)

- **Indium Gallium Phosphide** (In$_x$Ga$_{1-x}$P)
 - Indium content determines lattice constant of InGaP layers
 - Deviation of InGaP lattice constant from GaAs substrate leads to strained layers
 - Strain-dependant curvature during growth of InGaP layers enables in-situ composition measurement
Growth of InGaP on GaAs (2)

- Indium Gallium Phosphide ($\text{In}_x\text{Ga}_{1-x}\text{P}$)
 - Correlation of curvature change during growth to lattice mismatch determined by X-ray diffraction after growth
 - Quantitative in-situ measurement of lattice mismatch possible
Example 1: SLOC edge emitting diode laser with SC

- Stoney-based curvature transient modelling
- Replace Al$_{0.85}$GaAs-CLADs with Al$_{0.85}$GaAs$_{0.985}$P
- To be done: replace Al$_{0.85}$GaAs-CLADs with Al$_{0.85}$GaAs$_{0.97}$P

→ Al$_{0.85}$GaAs$_y$P$_{1-y}$ claddings can be used as a drop-in replacement to lower RT wafer bow without interfering electro-optical device properties
Example 2: 2-stage BCL with/without SC

- Overall thickness: 5.5 µm
- Mean Al content: 48%
- Replace $\text{Al}_{0.85}\text{GaAs}$ with $\text{Al}_{0.85}\text{GaAs}_{0.965}\text{P}$, $d \leq 350$ nm
- Tilted envelope \rightarrow flat

\rightarrow Observed wafer bow reduction translates into a 10 mm laser bar smile reduction from 19 µm to 11.7 µm \rightarrow less mounting induced reliability issues!
Summary

→ Reduce RT wafer bow of thick III-V laser structures:
 - Increase lattice mismatch at growth with tensile strained AlGaAsP or InGaP
 → Tensile strain during growth is limited by onset of relaxation
 - Use Al$_{0.85}$GaAs$_{0.965}$P as a drop-in replacement for Al$_{0.85}$GaAs claddings in edge-emitting diode lasers
 → EpiCurve assisted development of a distributed strain compensation scheme
 → 2-stage diode laser yielding a RT curvature reduction of $\Delta \kappa = 39 \text{ km}^{-1}$
 → Laser bar smile reduction from $\Delta z = 19 \ \mu \text{m}$ to $\Delta z = 11.7 \ \mu \text{m}$
 - Correlation between in-situ curvature change and ex-situ lattice mismatch
 → Faster R&D loops, early detection of production variances possible

Thank you for your attention!