An Accelerated Quality Control for Light-Induced Degradation (LID) on solar cell level

Marcus Gläser, Maximilian Paleschke, Tabea Luka, Jörg Bagdahn*, Dominik Lausch

<u>Aim:</u>

Introduction of an accelerated, reliable LID test based on experimental and modelling results.

Fraunhofer-Center für Silizium-Photovoltaik CSP, Otto-Eißfeldt-Straße 12, D-06120 Halle (Saale) *Hochschule Anhalt, Bernburger Straße 57. D-06366 Köthen

Content

- Important fundamentals
- Comparison of electrical and light induced degradation
- Introduction of an accelerated LID Test
 - LID Scope
 - Reproducibility and reliability
 - Accelerated LID Test and Measurement examples
- Conclusion

Content

- Important fundamentals
- Comparison of electrical and light induced degradation
- Introduction of an accelerated LID Test
 - LID Scope
 - Reproducibility and reliability
 - Accelerated LID Test and Measurement examples
- Conclusion

What is Light-Induced Degradation (LID)?

How is LID characterized:

- LID = Loss of module power output under illumination
- Various types of LID in
 - Thin Film Technology
 - Silicon Solar Cells
 - Module Components
- Most common LID in silicon solar cells
 - decrease of lifetime by formation of recombination active defects

LID threatens business case of solar parks → Important to prevent or control LID effect!

^{*} After S. Wilking et al., 29th EUPVSEC in Amsterdam, 2014

^{**}K. Bothe and J. Schmidt, J. Appl. Phys. 99, 013701 (2006)

Different Types of LID on Silicon Solar Cell Level

B-O LID¹

- B-doped CZ mono-Si
- complexes:
 B_sO_{2i}, ...
- > ~ 5–10 % rel.

LeTID²

- PERC techn. on mc-Si
- complexes: unknown
- > ~ 5-20 % rel.

Contam. of mc-Si⁴

- > mc-Si
- complexes: metals, unknown

Further

- all solar cell concepts
- complexes: unknown

LID effects traced back on solar cell level → Test of Solar Cells!

^{5 [1]} K. Bothe and J. Schmidt, J. Appl. Phys. 99, 013701 (2006)

^[2] T. Luka et al., to be published in Solar Energy Materials and Solar Cells

^[3] Lindroos, J. et al., Solar Energy Materials and Solar Cells, V. 147, pp. 115–126.

How to measure/quantify LID

All Parameters decrease*

Voc used to quantify LID

 V_{oc} used to quantify degradation \rightarrow Decreased V_{oc} indicates LID!

The Degradation- and Regeneration Cycle

- Degradation: Formation of recombination active defects due to light
 → decrease of carrier lifetime → decrease of Voc
- Regeneration: Formation of inactive (passivated likely by H) defects of formed complexes
- Process takes place simultaneously

Influence of Temp. and Injection on the Degradation

Degradation and Regeneration influenced by:

- Injection: higher → shorter cycle time
- ii. Temperature: higher -> significant shorter cycle time

Content

- Important fundamentals
- Comparison of electrical and light induced degradation
- Introduction of an accelerated LID Test
 - LID Scope
 - Reproducibility and reliability
 - Accelerated LID Test and Measurement examples
- Conclusion

Modeling of the degradation and regeneration cycle

Injection of electron and holes by forward bias?

- Model based on:
 - Chemical reactions:

$$BO_{inactive} \xrightarrow{\mathsf{k}_{\mathsf{deg}}} BO_{active} + H^0 \xrightarrow{\mathsf{k}_{\mathsf{reg}}} BO_{pass}$$

- Semiconductor physics
- Influence of light: Occupancy ratio α for determining amount of H⁰

$$\alpha = \frac{K * n_1 + p}{K * (n + p_1)}$$

Electrons and holes only parameters influenced by light (based on model)

Experimental setup

Comparison of light and electrical induced degradation!

Electrically induced Degradation and Regeneration

Forward biased standard cz-p-type solar cell without illumination

- In situ measurement of Voc
 - Low V_{oc} because of high temperature
 - Osccillating Voc caused by Toszillation can be neglected

Electrically induced degradation is possible!

Correlation of light vs. electrical induced degradation

Light and electrical induced degradation identical!

→ Physical mechanism based on carrier injection!

Correlation of light vs. electrically induced degradation

- Using same injection conditions I_{sc} = I_F
 → same kinetic behaviour
- Small deviations due to different samples (variation of B, O, H in bulk)

Electrical injection = Sun

<u>Development of measurement procedure based on electrical injection:</u>

- Easy and flexible control of "illumination"
- 2. Flexible and independent choice of temperature and injection
- Compact design possible and easy to control
- 4. Accurate and correct injection control

Content

- Important fundamentals
- Comparison of electrical and light induced degradation
- Introduction of an accelerated LID Test
 - LID Scope
 - Reproducibility and reliability
 - Accelerated LID Test and Measurement examples
- Conclusion

The LID Scope

LID Scope test*:

- Test of solar cells without module construction
- Suitable for process control (simplified for operators, direct result)
- Reliable and reproducible
- cost effective and quick LID testing

Results:

- Benchmark for LID susceptibility
- In-situ recording of Uoc
- Free choice of parameters (temperature and injection)

LID Scope commercial available

LID Scope

Monitoring of Light Induced Degradation (LID) effect in solar cells with ease!

LayTec offers the first easy-to-use, automated system that tests the LID effect for:

- quality control already on solar cell level
- production optimization
- tracking of material and process variations
- scientific investigation
- communication between companies

LID has a huge impact on cell efficiency and is the dominating cell defect in current cell technologies with direct impact on €/W.

LID Scope quantifies the efficiency loss of any solar cell within minutes! The tool performs accelerated or real-life degradation tests fully automatically. It delivers highly reproducible results and a permanent monitoring of V_{oc} changes by integrated metrology. These features make the tool an inevitable part of quality control and production optimization in PV industry.

- LID Scope commercial available by LayTec Inline GmbH
- For more information see Both E3-550

Reproducibility and Reliability

- Reproducibility test with 3 solar cells from one manufacturer
- Deviations caused by different solar cell characteristics i.e. O, B content, SiN layer, ...

→ Solar cell tests using LID Scope reproducible and reliable!

Accelerated LID Test

→ Quick Test: Test duration can be significant reduced by increased temperature!

1,000

0,995

0,990

0,985

0,980

0,975

V OC, norm

Measurement Examples

→ LID test can be applied independent on the degradation mechanism!

Conclusion/Summary

Summary:

- 1. Light and electrically induced Degradation identical!
- 2. Accelerated test (LID Scope) is a reliable and reproducible for testing solar cells LID characteristic!
- 3. Accelerated test (LID Scope) can be applied to all types of LID and solar cell concepts

Outlook

- 1. Procedure to predict efficiency loss
- 2. Quantitative comparison with module tests