

Fast and highly accurate in-situ calibration of AIGaAs ternary composition for MOVPE-based growth of edge-emitting diode lasers

Martin Zorn, JENOPTIK Diode Lab GmbH, Berlin, Germany

Oliver Schulz, J.-Thomas Zettler, LayTec, Berlin, Germany

Anthony J. SpringThorpe, NRC of Canada, CPFC, Ottawa, Canada

Introduction: manufacturing challenges for MOVPE of semiconductor laser diodes

laser bar (edge emitting laser diodes, EEL)

surface emitting laser (VCSEL)

Manufacturing of AlGaAs based lasers:

- stringent specifications: e.g. emission wavelength of final laser device ±1nm
- Properties of waveguiding layers (AlGaAs) crucially defines device performance
- homogeneity and reproducibility of growth process high yield!

→ AIGaAs composition with ±0.5% accuracy needed !

Introduction: AIGaAs during MOVPE growth (~700°C)

Target: wafer temperature (±1K); in-situ n,k_{AlGaAs} (±0.002) → in-situ AlGaAs composition with accuracy (±0.5%)

- 1. MOCVD calibration runs with optimized stack structure and accurate T_{wafer}
- 2. Ex-situ X-Ray diffraction (XRD) analysis → composition x and growth rate r
- 3. Self-consistent analysis of in-situ data \rightarrow nk(x,T) database referenced to XRD
- 4. Replacing time-consuming ex-situ calibration by fast, accurate and fully automated in-situ reflectance

Summary & Outlook

Calibration runs for growing XRD test structures

XRD gauged n and k database of AlGaAs

- With known XRD growth rates n and k have been determined by FPO analysis with an accuracy of ±0.002 (for 633nm) in the full x=0...100% composition range and in the full 600°C...710°C surface temperature range
- emissivity corrected 950nm pyrometry in conjunction with handheld calibration radiation source (AbsoluT) → wafer temperature T_g is exactly assigned

Routine AIGaAs process calibration by in-situ reflectance

Run F	Target		ex-situ XRD		in-situ	in-situ	in-situ	in-situ
Layer	d (nm)	х	r (nm/s)	х	r(nm/s)	х	$\Delta r/r$	Δx
GaAs	750	0,000	0,5971	0,000	0,602	0,002	0,8%	0,2%
Al(0,4)GaAs	450	0,400	0,5531	0,402	0,564	0,402	2,0%	0,0%
GaAs	750	0,000	0,5964	0,000	0,602	0,000	0,9%	0,0%
AI(0,6)GaAs	450	0,600	0,5659	0,601	0,558	0,607	-1,4%	0,6%
GaAs	750	0,000	0,5959	0,000	0,600	0,000	0,7%	0,0%
AI(0,7)GaAs	450	0,700	0,5828	0,695	0,577	0,690	-1,0%	-0,5%
GaAs	750	0,000	0,5967	0,000	0,599	0,000	0,4%	0,0%
AlAs	450	1,000	0,5890	1,000	0,598	1,000	1,5%	0,0%
GaAs-Sub.		0,000						

Single wavelength (633nm) in-situ reflectance analysis gives:

- AIGaAs composition with accuracy of ±0.5%

- growth rates with ±1% variation from XRD

Routine AIGaAs process calibration by in-situ reflectance

Using all 3 wavelength for combined (633/405/950nm) in-situ reflectance analysis of growth rates / layer thickness gives:

- In-situ growth rates with even better (±0.3%) precision (here: d_{in-situ}=457.1nm; d_{XRD}=458.8nm)
- The scatter in XRD growth rates, e.g. for GaAs layers in the same stack, is larger (±0.6%) ! ... due to correlation effects in multi-layer analysis?

Summary and Outlook

Summary:

• AIGaAs → We have demonstrated:

in-situ determination of

 \rightarrow

x(0%....100%) with ±0.5% precision (formerly: 2% ... 3%) growth rate r with ±0.3% precision (formerly: 1% ... 3%)

Outlook #1:

- → we will continue with AlGaInP (e.g. 650 nm)
 - ... by combining strain balancing
 - (in-situ wafer bow meas.)
 - with high-accuracy
 - reflectance analysis.

Outlook #2: VCSEL process SPC

Example: 980nm InGaAs/AlGaAs VCSEL (x=12%/90% DBRs) based on A.Mutig, PhD thesis, TU Berlin, 2010

R spectrum: at T_a shifted to longer wavelength!

New AlGaAs nk-database: used for simulating 650°C in-situ data → intended (grading) and non-intended (r-drifting) VCSEL process changes show-up clearly and characteristically → to be fed into SPC/MES!

Business Unit Lasers | Lasers & Material Processing

JENOPTIK

SHARING EXCELLENCE