In-situ metrology during growth of novel nitride-based semiconductor Bragg mirrors

Christoph Berger¹, Armin Dadgar¹, Stephanie Fritze², and André Strittmatter¹

¹Institute of Experimental Physics Otto-von-Guericke-University Magdeburg, Germany

²LayTec AG, Berlin, Germany

Distributed Bragg mirrors

- Alternating layers of different refractive index
- Tunable reflectivity, central wavelength, and bandwidth
- Key elements in micro-resonators

Nitride-based Bragg-reflectors

Challenges:

- Mismatch of optimal growth windows
- Lattice mismatch
- Conduction band offsets
- Polarization fields

In-situ monitoring of DBR growth

AllnN/GaN DBR

- Lattice-matched growth on GaN for x_{In}~17%
- > $\Delta n/n \sim 7.5$ %, bandwidth > 20 nm

Maximum reflectivity values above 99 % possible

Mismatch of optimum growth window

Evolution of DBR reflectivity

Characteristic pattern at each wavelength

Prediction of stopband position

Weak sensitivity within stopband Faster dynamics away from stopband

Experimental

Simulation of full DBR growth

GaN - refractive index at high temperatures

Refractive index of AlInN – in-situ

Refractive index fitted using LayTec EpiNet simulation tool.

GaN:Ge/GaN DBR

- DBR structure by Ge doping of GaN (strain-free growth)
- $> \Delta n/n \sim 2.0$ %, bandwidth ~5 nm
- Narrow-band reflector

Homoepitaxial DBR mirrors

Refractive index change by doping

- Burstein-Moss-effect
 - > Blue shift of absorption edge with free carrier concentration
 - Change of refractive index

E. Burstein, Phys. Rev. 93, 632 (1954)T. S. Moss, Proc. Phys. Soc. B 67, 775 (1954)

Strain-free, conductive layers
Similar growth conditions

Bandgap shift of n-doped GaN

Change of the excitonic transition energy

- Bandgap renormalization
- Burstein-Moss-shift

M. Feneberg et al., Phys. Rev. B 90, 075203 (2014)

> Significant (∆E_g>250 meV) bandgap shift for [n]~10²⁰ cm⁻³.
 > Ge-doping superior over Si-doping in MOVPE.

>2% refractive index change across visible spectrum ➤ R>90% for 60 layer pairs

In-situ calibration of doping level

- Increase of refractive index contrast with doping concentration
- Oscillation amplitude probes free carrier concentration

Drift of Ge incorporation

- Strong initial change within 10-15 min
- Long-term drift over hours

Improved modelling

Adjustment of GaN:Ge n-k values with increasing growth time

LED with GaN/GaN:Ge DBR

Summary

- In-situ metrology for growth of lattice-matched AllnN/GaN and GaN:Ge/GaN DBRs
- Reflectivity oscillations as sensitive fingerprint of DBR stopband position
- Strength of amplitude oscillations proportional to Ge doping level
- High-temperature n,k-database for GaN as basis for insitu analysis of AlInN and GaN:Ge

