MOCVD of InGaAsP/InP and InGaAlAs/InP based device structures: full replacement of ex-situ process calibration by advanced in-situ metrology

A.J. SpringThorpe, O.J. Pitts, O. Salehzadeh Einabad,

B. Paquette CNRC, Ottawa

C. Hums, W. Ebert Fh HHI, Berlin

O. Schulz, B. Dreesen and J.-T. Zettler LayTec AG, Berlin

Motivation

Growth rate calibration:

- ex-situ X-ray diffraction (Pendellösung fringing): $<< \pm 1\%$
- in-situ reflectance oscillation: $\pm 1\%$ (if nk is known accurately)
- → Use XRD/fringing as reference for determining accurate nk at growth temperature for InP, InGaAs, InGaAsP, ...!

Lattice match calibration (InGaAs, InGaAsP, InGaAlAs on InP):

- ex-situ XRD measures with accuracy $\Delta a/a = \pm 50$ ppm
- in-situ wafer bow measures with accuracy $\Delta a/a = \pm 300$ ppm
- \rightarrow Improve wafer bow resolution to at least ±100ppm!

<u>Composition calibration</u> (InGaAsP, InGaAlAs on InP):

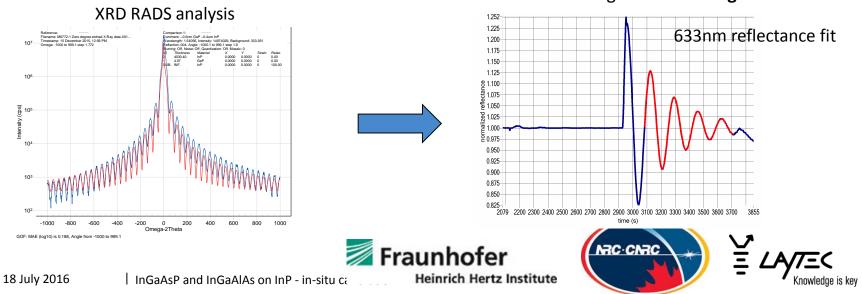
- ex-situ PL XRD measures band-edge wavelength: $\Delta\lambda$ = ±0.5nm
- in-situ reflectance analysis measures 'effective band-edge wavelength': $\Delta\lambda_{eff}$ = ±5nm
- → Improve in-situ composition calibration to $\Delta\lambda_{eff}$ = ±1nm!

Heinrich Hertz Institute

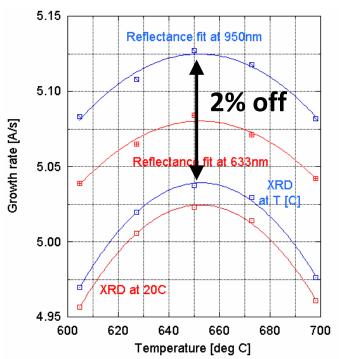
¥

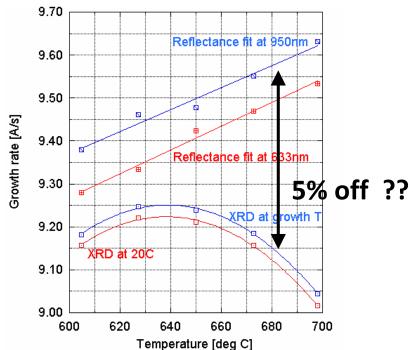
18 July 2016 InGaAsP and InGaAlAs on InP - in-situ ca

1. GROWTH RATE CALIBRATION


18 July 2016 InGaAsP and InGaAlAs on InP - in-situ co

Improving nk (InP) by using XRD growth rates


InP test structure:


_InP // 100nm InP buffer / 0.5nm GaP / 500nm InP / 20nm InGaAs / 400nm InP cap for XRD for in-situ R (removed for XRD)

Step #1: grow structure and measure in-situ reflectance Step #2: etch away InGaAs and InP cap (creating ideal structure for XRD) Step #3: XRD thickness \rightarrow calculate RT XRD "growth rate" from growth time Step #4: correct "XRD growth rate" $r_{XRD}(T_g)$ with thermal expansion coeff. Step #5: analyse in-situ reflectance with known $r_{XRD}(T_g) \rightarrow nk(T_g)$

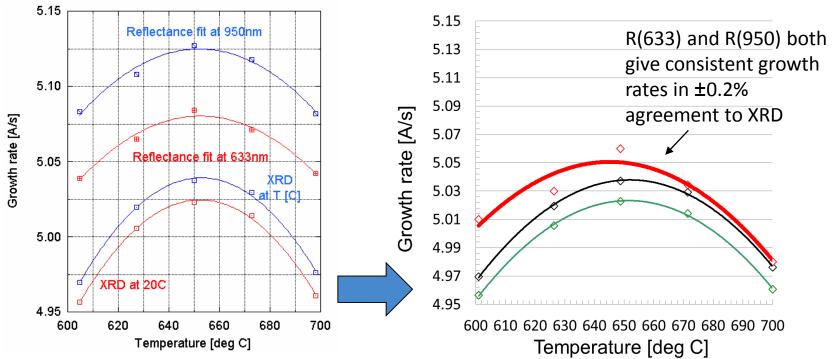
In-situ growth rate calibration – where we started:

r of InP (T=600C - 700C):

- in-situ reflectance and XRD gives the
 same basic trend of growth rate
- R(633nm) → r offset about +1%
- R(950nm) \rightarrow r offset about +2%

r of InGaAs (T=600C - 700C):

- in-situ reflectance gives linear and XRD gives parabolic trend with T
- R(633nm) → r offset >= +1 ... 4% ??
- R(950nm) → r offset >= +2 ... 5% ??



5

18 July 2016

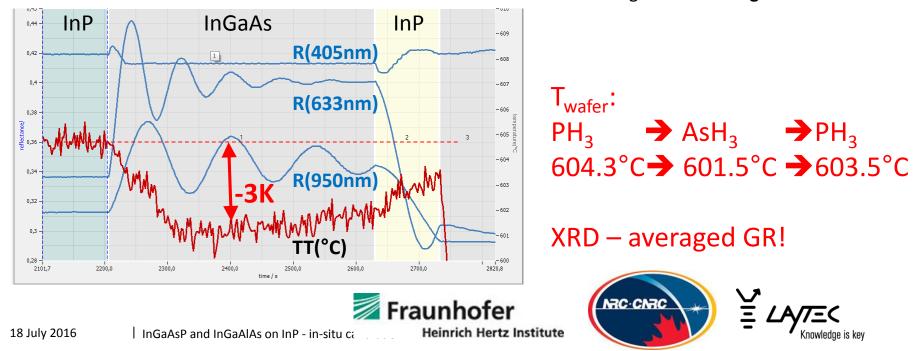
In-situ growth rate calibration – result for InP

Analysis with old nk(T)

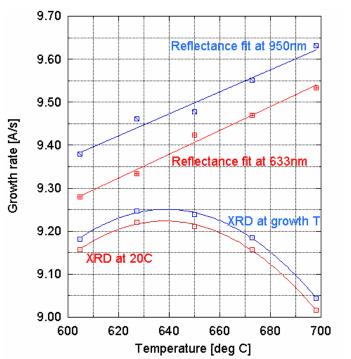
- in-situ reflectance and XRD gives the same basic trend of growth rate
- R(633nm) → r offset about +1%
- R(950nm) → r offset about +2%

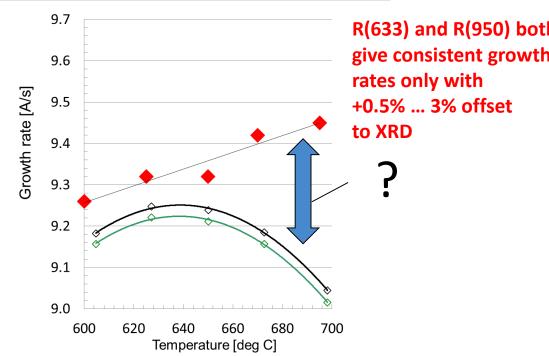
Analysis with XRD gauged nk(T)

- 0.2% consistency now between
 633nm/950nm nk data → 2WL-Fit
- 0.3% consistency between XRD and in-situ at T>620C



6


Improving nk (InGaAs) by using XRD growth rates


InGaAs test structure: InP // 100nm InP buffer / 500nm InGaAs / 50nm InP cap for XRD and for in-situ R

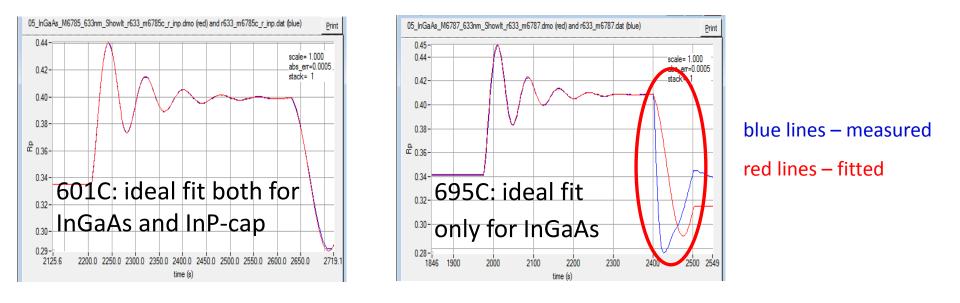
Step #1: grow structure and measure in-situ reflectance Step #2: XRD thickness \rightarrow calculate RT XRD "growth rate" from growth time Step #3: correct "XRD growth rate" $r_{XRD}(T_g)$ with thermal expansion coeff. Step #4: analyse in-situ reflectance with known $r_{XRD}(T_g) \rightarrow nk(T_g)$

In-situ growth rate calibration – result for InGaAs

Analysis with old nk(T):

- in-situ reflectance gives linear and XRD gives parabolic trend with T
- R(633nm) → r offset about +1%
- R(950nm) → r offset about +2%

Analysis with XRD gauged nk(T)

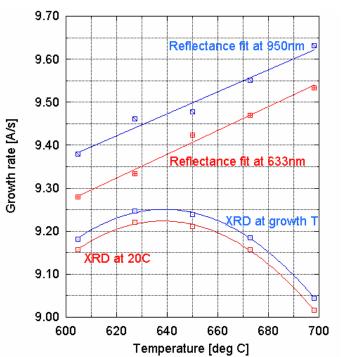


18 July 2016

Heinrich Hertz Institute

Fraunhofer

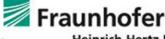
Improving nk (InGaAs) by using XRD growth rates


At higher T_g the InP-cap causes a strong interface reaction reducing InGaAs thickness → RT ex-situ XRD gives reduced thickness!



18 July 2016 InGaAsP and InGaAlAs on InP - in-situ ca

In-situ growth rate calibration – result for InGaAs

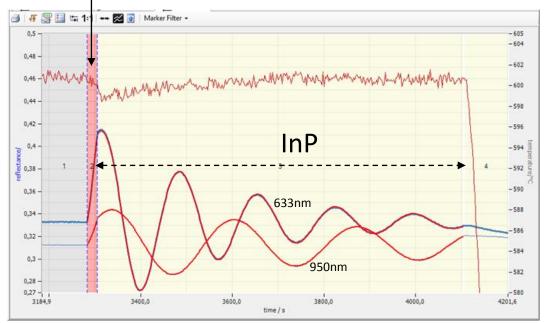

650C-700C: XRD thickness reduced by 0.5%...3% due to InGaAs/InP–cap interface reaction

Analysis with old nk(T):

- in-situ reflectance gives linear and XRD gives parabolic trend with T
- R(633nm) → r offset about +1%
- R(950nm) → r offset about +2%

Analysis with XRD gauged nk(T)

- 0.1% consistency now between
 633nm/950nm nk data → 2WL-Fit
- >650C the InP cap apparently reduces the InGaAs thickness below



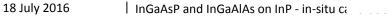
18 July 2016

Heinrich Hertz Institute

In-situ growth rate calibration – 2λ growth rate fits

InGaAs

blue lines – measured


red lines - fitted

<u>Consistent and XRD referenced nk data</u> combined with 2λ -fits:

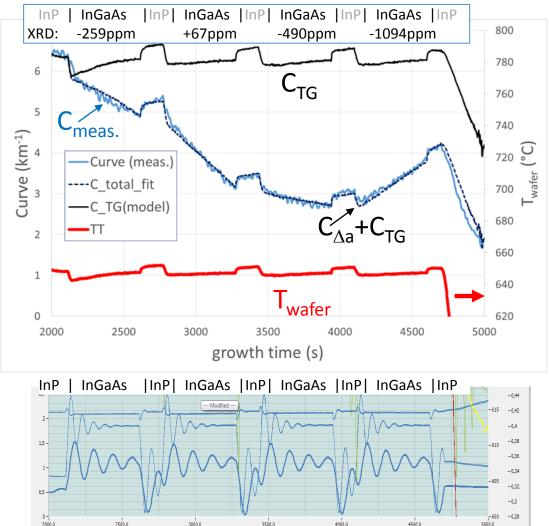
Even very thin layers (here the InGaAs contrast layer under the InP) can be accurately fitted → d_{InGaAs} = 17.5nm // d_{InP} = 401.8nm

Fraunhofer

Heinrich Hertz Institute

2. Lattice Match Calibration

... after resolution of in-situ wafer curvature measurement had been improved for CCS reactors from ~3km⁻¹ → 0.3km⁻¹


12

In-situ wafer bow for lattice matching of InGaAs/InP

4500.0

Fraunhofer

Heinrich Hertz Institute

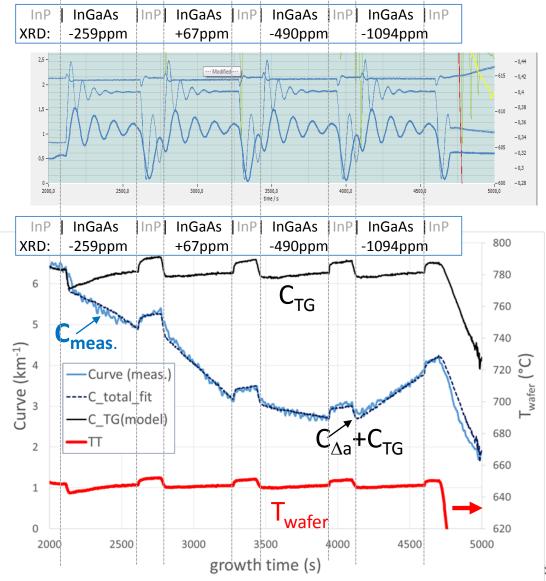
3500,0

time İ s

Wafer bow is sensitive to small lattice mismatch, but: precursor gas changes cause change in wafer surface temperature

 \rightarrow full simulation of wafer bow response has to include vertical temperature gradient (TG, wafer back-side / wafer-front-side)

Reflectance of all 4 InGaAs layers at all 3 wavelength is identical! \rightarrow InGaAs refractive index and growth rate is NOT sensitive to small lattice mismatch!



18 July 2016 InGaAsP and InGaAlAs on InP - in-situ ca

3000.0

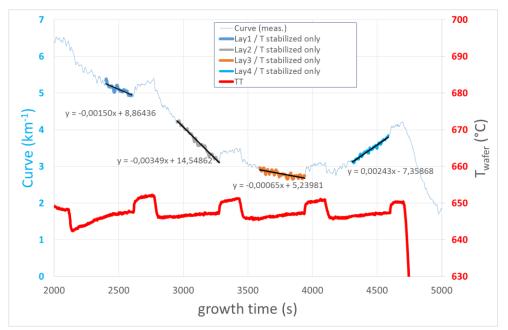
2500.0

In-situ wafer bow for lattice matching of InGaAs/InP

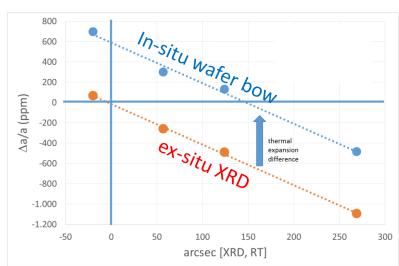
InP | InGaAs | InP | InGaAs | InP | InGaAs | InP | InGaAs | InP

<u>Reflectance</u> of all 4 InGaAs layers at all 3 wavelength **is identical**!

➔ InGaAs refractive index and growth rate is NOT sensitive to small lattice mismatch!


Wafer bow is sensitive to small lattice mismatch, but: precursor gas changes cause change in wafer surface temperature

→ full simulation of wafer bow response has to include vertical temperature gradient (TG, wafer back-side / wafer-front-side)



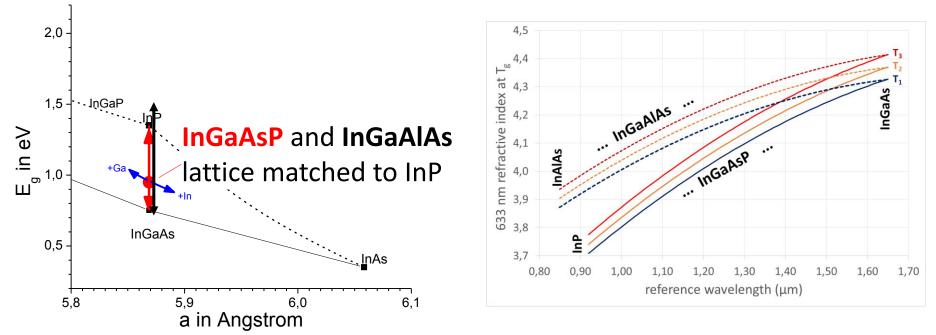
ute

In-situ lattice matching of InGaAs/InP: $\Delta a/a=\pm 50$ ppm

<u>Simplified analysis:</u> slope of wafer bow during InGaAs growth AFTER re-stabilization of T_{wafer} !

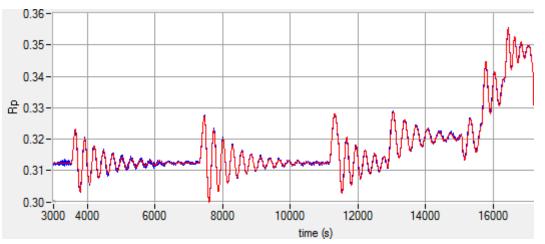
Slope of wafer bow, normalized to InGaAs growth rate, is an accurate measure of even very small lattice mismatch!

Once calibrated to XRD → in-situ adjustment of lattice match!


3. Composition Calibration of lattice matched quaternaries on InP

18 July 2016 | InGaAsP and InGaAlAs on InP - in-situ ca

The high temperature nk of lattice matched InGaAsP and InGaAlAs directly correlate with PL emission wavelength at room-temperature


Based on XRD gauged nk of InP \rightarrow improved accuracy of nk (633nm) of InGaAsP and InGaAIP ... but work is still in progress

18 July 2016 InGaAsP and InGaAlAs on InP - in-situ ca

Full Device analysis (HHI-Stack)

blue lines – measured

red lines – fitted

- Lattice matching of all layers verified by in-situ wafer bow
- PL emission wavelength (effective composition) measured in-situ by nk fit to the reflectance FPOs of all layers
- Composition analysis possible only for layers >~200nm
- Optimizing the analysis strategy: thickness of very thin films (5-20nm) can measured accurately by fixing nk(T) to values determined before at thicker films (of same effective composition) in the same stack

SUMMARY

Growth rate calibration: → Use XRD/fringing as reference for determining accurate nk at growth temperature for InP, InGaAs, InGaAsP, ...! Lattice match calibration (InGaAs, InGaAsP, InGaAlasP, InGaAlasP, InGaAsP, In

→ Improve in-situ composition calibration to $\Delta\lambda_{eff}$ = ±2nm!

Not yet mentioned so far: in-situ wafer temperature control \checkmark better $\pm 1K$ (AbsoluT calibrated to the PTB/NIST standard) is a must for all of this!

ess

Knowledge is key

Thank you for your attention

www.laytec.de