ICP-etching of GaN HFET structures: real time statistical process control of nm-thick GaN layers by means of end point detection

A. Martinez¹, R.-S. Unger², M. Binetti¹, F. Brunner², C. Lörchner-Gerdaus¹, K. Haberland¹, J.-K. Zettler¹

¹ LayTec AG, Seesener Str. 10-13, 10709 Berlin, Germany

² Ferdinand-Braun-Institut gGmbH, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Straße 4, 12489 Berlin

Introduction

GaN based HFET and challenges in Plasma Etch

Endpointing with ICP

Connected metrology

Summary

Introduction

GaN based HEMTS and challenges in Plasma Etch

Endpointing with ICP

Connected metrology

Summary

STADTRANDSIED

Optical Metrology Company founded 1999 in Berlin

- > 25 years old
- > Spin-off of TU Berlin
- > 90+ employees
- > 3500 systems sold
- > Operating worldwide
- Member of Nynomic group

Our business:Process-integrated optical metrologyOur markets:Semiconductor and thin-film industry & academia
incl. lighting, laser, PV, glass coating ...

LayTec – expertise and applications in optical metrology for ...

Introduction

GaN based HFET and challenges in Plasma Etch

Endpointing with ICP

Connected metrology

Summary

Challenges in GaN Power Device Fabrication

Normally-OFF GaN HFET concepts

(a) p-GaN gate HFET

- High gate leakage
- Lower breakdown voltage
- Easier manufacturing

(b) MIS-HFET

- Low gate leakage
- Large gate voltage swing
- Manufacturing challenges: stop 5 nm before GaN interface without contrast layer!

Challenges in Plasma Etching

- > Time based etching has limitations
- > End Point Detection (EPD) offers advantages

APCM 2023 APCM 2024 !

					-	
	EPD Method	Monitors		Processes	Atomic Layer Etching (ALE)	Inductively Coupled Plasma (ICP)
	Spectroscopy (OES)	Plasma		Profiles	Anisotropic	lsotropic/Anisotropic
	White Light reflectance	Wafer		Etch Rate	Slow ~ 0.1 nm/sec	Slow to fast ~ 1-10 nm/sec
	Interferometry			Selectivity	Very good	Very good
						ICD

Is interferometry based EPD also suitable for AlGaN etch thickness control using ICP ?

Plasma-Etch using Interferometry EPD in Compound Semiconductor

- Real time measurements of an optical beam being reflected at a surface being etched away
- Principle of Operation: ,Wafer Stack Etching'
 - Signals from etching surface and every other interface of wafer stack \rightarrow Reflectance or

'Etch transient'

EPD

9

WL1

WL2

apc|m 2024 | LayTec AG | info@laytec.de | PROPRIETARY

Introduction

GaN based HFET and challenges in Plasma Etch

Endpointing with ICP

Connected metrology

Summary

In-situ setup on an ICP etcher

- > UV and near UV wavelengths
- > Camera for pattern recognition
- Communication for endpointing
- Recipe loop waits on endpointing signal
- Communication latency ~200ms
- Performed several etch runs on p-GaN HFET and UV GaN-laser structures
- Successfully demonstrated endpointing < 10nm p-GaN
 HFET structure

In-situ diagnostic 1: Influence of wafer carrier

In-situ diagnostic 2: Etch rate stability

- > Again, clearly visible FPO in p-GaN & AlGaN barrier at all 3 wavelengths
- > Etching of entire GaN buffer can be monitored w/ visible wavelength
- Slight etch rate increases during etch from 6 to 7nm/s:
 - evidence of chamber warm-up effect : heat transfer Wafer \rightarrow Electrode !
- In-situ measurements also enables some plasma monitoring, like with OES

Calibration prior to systematic EPD: Time $\leftarrow \rightarrow$ Etch Depth

Etch stop in GaN buffer

- EPD requirement : remaining AlGaN thickness < 10 nm</p>
- Algorithm derived from targeted Reflectance @ UV wavelength

Multiple End Point Detection Trials on HFET \rightarrow Suitability for Process Control

- Successful automatic EPD enabling to reach specifications:
 - > residual AlGaN of < 10 nm ! \rightarrow Median ~ 4 nm
 - With a range of < 1.5 nm</p>

Multiple End Point Detection Trials on HFET \rightarrow Suitability for Process Control

etchrate variance (norm.)

- Chamber conditioning: ,Run a regular process but with a seasoning wafer'
- Measurement system accurately determines the etchrate in situ
- > Etch metrology evidences two different operating conditions of etcher

Introduction

GaN based HFET and challenges in Plasma Etch

Endpointing with ICP

Connected metrology

Summary

Plasma-Etch end-pointing in GaN/AlGaN-based HFET structures

- > a) Real-time reflectance measurement during MOVPE
- > layer thickness measurements with accuracy in ±1 nm range

- **b) 'Time inverted' reflectance trace**
- Preview to etch transient measurement

- c) Real-time reflectance measurement during plasma etching
- > Analysis simplified by previous knowledge

Introduction

GaN based HFET and challenges in Plasma Etch

Endpointing with ICP

Connected metrology

Summary

Conclusion

- > End pointing is demonstrated for ICP etch of GaN HFET
- > Reproducibility and accuracy of end pointing is also demonstrated
- > End pointing enables process control :
 - residual AlGaN thickness ~ 4 nm
 - with range < 1.5 nm</p>
- Accurate real time etch rate variation :
 - > Evidence of different etcher operating conditions
- Similarly end-pointig is possible for ICP dry etch of GaN, InP and GaAs
- Combination of in-situ deposition control, post-epi mapping and in-situ etch control offers potential for even tighter process control and maximum yield

Knowledge is key

www.laytec.de

